Intrinsic Ultracontractivity on Riemannian Manifolds with Infinite Volume Measures
نویسنده
چکیده
By establishing the intrinsic super-Poincaré inequality, some explicit conditions are presented for diffusion semigroups on a non-compact complete Riemannian manifold to be intrinsically ultracontractive. These conditions, as well as the resulting uniform upper bounds on the intrinsic heat kernels, are sharp for some concrete examples. AMS subject Classification: 58G32, 60J60
منابع مشابه
A Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE
A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...
متن کاملUniform Estimates of the Resolvent of the Laplace–Beltrami Operator on Infinite Volume Riemannian Manifolds with Cusps.II
We prove uniform weighted high frequency estimates for the resolvent of the Laplace-Beltrami operator on connected infinite volume Riemannian manifolds under some natural assumptions on the metric on the ends of the manifold. This extends previous results by Burq [3] and Vodev [8].
متن کاملThe Essential Spectrum of the Laplacian on Manifolds with Ends
Let V be a noncompact complete Riemannian manifold. We find a geometric condition which assures that the essential spectrum of the Laplacian on V contains a half-line, by means of fiber bundle structures and the asymptotic behavior of mean curvatures on the ends of V , and give lower bounds of the essential spectrum. Our criteria can be applied to locally symmetric spaces of finite volume and m...
متن کاملOn a class of paracontact Riemannian manifold
We classify the paracontact Riemannian manifolds that their Riemannian curvature satisfies in the certain condition and we show that this classification is hold for the special cases semi-symmetric and locally symmetric spaces. Finally we study paracontact Riemannian manifolds satisfying R(X, ξ).S = 0, where S is the Ricci tensor.
متن کامل